Philadelphia UniversityFaculty of ScienceDepartment ofBiotechnology andGenetic EngineeringAcademic year 2022/2023

Approval date:

Issue:

Credit hours: 1

22/2023 Course Syllabus

Bachelor

Course information

Course#	Course title	Prerequisite		
0240485	Applied Molecular Biology Laboratory	0240482		
Course type			me	Room #
 □University Requirement □ Faculty Requirement ✓ Major Requirement □ Elective ✓ Compulsory 			ed)-)	2911

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Ahmad Ghuneim	s823	2491	Sun,Tue, Thr (09:30-10:30) Sun,Mon) (13:10-16:00)	aghuneim@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method					
✓ Physical □ Online □ Blended					
Learning Model					
Precentage Synchronous Asynchronous		Physical			
			✓		

Course Description

This module is a major (Mandatory) Departmental course for the Fourth Year. It is taught by lectures, lab and Technology-based. The module focuses on selected basic methods in the purification of biological macromolecules: Protein and RNA. The course deals with horizontal and vertical electrophoresis using polyacryalmids and agarose gels, centrifugation, detection techniques such as immunobltting and other essential techniques in modern gene technology i.e cDNA synthesis, RT- PCR and qPCR.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes
K1	Demonstrate theoretical and practical knowledge and experience of basic methods and techniques that used to isolate, quantify, separate and detect proteins including protein extraction methods, Bradford assay, SDS-PAGE, Western blotting.	Кр3
K2	Demonstrate theoretical and practical knowledge and experience of basic methods and techniques in applied molecular biology including RNA Extraction, RNA Extraction Assessment, RT-PCR, Real Time PCR.	КрЗ
S1	Demonstrate ability and responsibility in using, preserving and maintaining laboratory equipment's necessary in the applications of biotechnology and related fields.	Sp1
S2	Investigate and analyze the role of heredity and molecular genetics in a wide range of application.	Sp2
C1	Recognize the use of biotechnology to study, monitor and treat diseases and alter food and environment.	Cp1
C2	Demonstrate critical thinking skills utilize a wide range of information sources and communicate through oral presentations and written reports.	Cp2
C3	Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.	СрЗ
C4	Demonstrate professional and ethical conduct in compliance with biorisk and biosafety regulations.	Cp4

Learning Resources

Course textbook	There is no lab manual for this course. handouts, protocols and accompanying papers will be provided for every student.
Supporting References	
Supporting websites	
Teaching Environment	□Classroom ✓ laboratory □Learning platform □Other

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Understanding and application of Material Safety	Lecture		Handouts
2	Protein Extraction	Lecture and practical work	Isolate nuclear and cytoplasmic proteins from mouse liver and kidney	Handouts
3	Determination of protein concentration (Bradford Assay)	Lecturer and practical work	Estimate the quantity of nuclear and cytoplasmic proteins	Handouts
4	SDS-PAGE Part I	Lecture	Preparing vertical gel	Handouts
5	SDS-PAGE Part II	Lecture and practical work	Run samples by the electrophoresis	Handouts
6	SDS-PAGE Part III	Lecture and practical work	Staining and de-staining procedure	Handouts
7	Western Blot Analysis Part 1	Collaborative	Perform blotting step	Handouts
8	Western Blot Analysis Part II	Problem solving	Continuing with procedure steps	Handouts
9	Midterm Exam			Handouts
10	Total RNA isolation	Lecture and practical work	Extract the total RNA from whole blood.	Handouts
11	RNA Quantity and Quality Detection	Flipped Class	Estimate the quantity and quality of RNA.	Video
12	Reverse Transcription PCR	Lecture and practical work	Preparing the RT-PCR reactions	Handouts
13	Real Time PCR	Lecture and practical work	Preparing the real time pcr reaction	Handouts
14	Real Time PCR Application	Collaborative learning	Analysis the results	Handouts
15	Final Exam			

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology				
Recognize legitimate and scientific information				
Communication skills				
Creating a safe ambiance, motivate students to initiate and engage in conversation, encouraging				
them to participate in teamwork and sharing opinions.				
Application of concepts learnt				
Inspiring students to set challenging goals and transferring the knowledge to new problems and				
situations by engaging them in cooperative learning and simulation.				

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	8	K1, S1,S2
Various Assessments *	% 30	3,5,6,8,11,14	K,S,C
Final Exam	% 40	15	K2, S1,S2
Total	%100		

Assessment Methods and Grade Distribution

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**				
Knowledge							
K1	Demonstrate theoretical and practical knowledge	- Lecture	- Exam				
	and experience of basic methods and techniques	- Problem	- Report				
	that used to isolate, quantify, separate and detect	solving	-				
	proteins including protein extraction methods,	- Flipped	Videotaped				
	Bradford assay, SDS-PAGE, Western blotting.	classes.	assignment				
K2	Demonstrate theoretical and practical knowledge	-	- In class				
	and experience of basic methods and techniques in	Collaborative	assignment				
	applied molecular biology including RNA	learning					
	Extraction, RNA Extraction Assessment, RT-PCR,	- Practical					
	Real Time PCR.	work.					
	Skills						
S1	Demonstrate ability and responsibility in using,	Practical	Report				
	preserving and maintaining laboratory	work.	Observation				
	equipment's necessary in the applications of						
	biotechnology and related fields.						
S2	Investigate and analyze the role of heredity and	Practical	Exam				
	molecular genetics in a wide range of application.	work	In class				
			assignment				
	Competencies	_					
C1	Recognize the use of biotechnology to study,	Lecture	Exam				
	monitor and treat diseases and alter food and	Problem	In class				
	environment.	solving	assignment				
C2	Demonstrate critical thinking skills utilize a wide	Collaborative	Assignment				
	range of information sources and communicate	learning	and Reports				
	through oral presentations and written reports.						
C3	Recognize the need for, and have the preparation	Flipped class	Videotaped				
	and ability to engage in life-long learning		assignments				
	independently, with a high level of enthusiasm and						
	commitment to improve knowledge and						
	competence continuously.						
C4	Demonstrate professional and ethical conduct in	Practical	Observation				
	compliance with biorisk and biosafety regulations.	Work					

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Policy	Policy Requirements					
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final					
	mark recorded on transcript is (35%).					
	• Missing an exam without a valid excuse will result in a zero grade to					
	be assigned to the exam or assessment.					
Missing	• A Student who misses an exam or scheduled assessment, for a					
Exams	legitimate reason, must submit an official written excuse within a					
	week from the an exam or assessment due date.					
	• A student who has an excuse for missing a final exam should submit					
	the excuse to the dean within three days of the missed exam date.					
Attendance	The student is not allowed to be absent more than (15%) of the total hours					
	prescribed for the course, which equates to six lectures days (M, W) and					
	seven lectures (S,T,R). If the student misses more than (15%) of the total					
	hours prescribed for the course without a satisfactory excuse accepted by the					
	dean of the faculty, s/he will be prohibited from taking the final exam and					
	the grade in that course is considered (zero), but if the absence is due to					
	illness or a compulsive excuse accepted by the dean of the college, then					
	withdrawal grade will be recorded.					
Academic	Philadelphia University pays special attention to the issue of academic					
Honesty	integrity, and the penalties stipulated in the university's instructions are					
	applied to those who are proven to have committed an act that violates					
	academic integrity, such as: cheating, plagiarism (academic theft), collusion,					
	and violating intellectual property rights.					

Course Polices

Program I	Learning	Outcomes	to be	Assessed	in	this	Course
------------------	----------	----------	-------	----------	----	------	--------

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Kp3	Understand the molecular techniques including: immunological techniques, gene cloning, polymerase chain reaction, DNA sequencing, gene editing, blotting and nucleic acids hybridizations along with the basic skills of laboratory organization and management.	Applied Molecular Biology Laboratory	- Exam - Report - Videotaped assignment - In class assignment	75%
Sp1	Demonstrate ability and responsibility in using, preserving and maintaining laboratory equipment's necessary in the applications of biotechnology and related fields.	Applied Molecular Biology Laboratory	Observation Report Exams	75%
Sp2	Investigate and analyze the role of heredity and molecular genetics in a wide range of application.	Molecular Biology Laboratory	Exam Assignment	75%
Cp1	Recognize the use of biotechnology to study, monitor and treat diseases and alter food and environment.	Applied Molecular Biology Laboratory	Exam Assignment	75%
Cp2	Demonstrate critical thinking skills utilize a wide range of information sources and communicate through oral presentations and written reports.	Applied Molecular Biology Laboratory	Assignment and report	75%
Ср3	Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.	Applied Molecular Biology Laboratory	Videotaped assignment and Report	80%
Cp4	Demonstrate professional and ethical conduct in compliance with biorisk and biosafety regulations.	Applied Molecular Biology Laboratory	Observation	80%